Table 1. Monthly Climatic Averages for Snoqualmie Pass, Washington WSO Rainy Mine EE/CA

						Mo	nth						
Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Maximum Temperature (°F)	31.9	37	42.4	49.3	57.2	62.9	70.4	69.6	64.6	53.9	39.3	33.4	51
Average Minimum Temperature (°F)	21.1	23.6	26.1	30.4	34.5	40.4	46	46.2	41.7	35.6	28.2	24.1	33.2
Average Total Precipitation (in)	15.91	12.39	11.18	6.39	4.25	3.97	1.58	2.2	4.75	9.73	14.94	17.46	104.76
Average Total Snowfall (in)	106.9	81.1	78	27.2	5.1	0.1	0.1	0.0	0.2	6.7	43.5	91.5	440.4
Average Snow Depth (in)	70	91	96	76	32	2	0	0	0	0	10	37	34

Source: National Weather Service, Period of Record 2/19/70 to 4/30/07 (WRCC 2007)

Percent of possible observations for period of record: maximum temperature = 96%, minimum temperature = 95.9%, precipitation = 95.6%, snowfall = 97.2%, snow depth = 96.8%

°F = Degrees Fahrenheit

in = inches

Table 3. Background Soil Analytical Results Summary Rainy Mine EE/CA

	Date													A	nalyte C	oncentra	ation (mg/k	(g)												1
Sample ID	Collected	рΗ	Ca	K	Mg	Na	Ag	Al	As ₃	As ₅ ^b	As _T	Ва	Ве	Cd	Co	As ₅ ^b	Cr ₆	Cr _T	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	TI	V	Zn	1
RM-BGS-1	6/27/2004	4.4	670	250	930	150	0.71	21900	0.534	58.3	3 5	8.8	21.3	0. <u>30.15</u>	2	4.0	0.52	<u>5</u>	38.6	13000	0.08	52.9	2.2	5.37	<u>0.</u> 1	0.6	0.07	24.1	13	1
RM-BGS-2	6/27/2004	5.1	1490	550	1620	160	0.43	3 23800	0.465	26.5	5 2	27	47.9 <u> </u>	0.20.25	4	5.9	0.53	7	547	19500	0.08	196	7.1	82	0.8	0.5	0.1	29.5	166	l
RM-BGS-3	6/27/2004	4.9	670	240	730	210	0.13	14300	0.235	7.5	7		14.10.1	0.14	<u>3</u>	NC	27.1	<u>4</u>	15	12600		161	1.9	6.71	0.2	0.25	<u>0.08</u>	25.5	12	1
	minimum =	4.4	670	240	730	150	0.13	14300	0.24	7.5	7.7	7 14	1.1 0.1	0.14	<u>2</u>	4.0	0.52	<u>4</u>	15	12600	0.08	52.9	1.9	5.4	<u>0.</u> 1	0.25	0.07	24.1	12	1
	MDC =	5.1	1490	550	1620	210	0.71	23800	0.53	58.3	58.	.8 4	7.9 (0.3 <u>0.25</u>	<u>4</u>	5.9	27.1	7	547	1950	0 <u>0.</u> 11	196	7.1	82	0.8	0.60	0.10	29.5	166	I
	average=	4.8	943	347	1093	173	0.65	20000	0.41	30.8	31.	.2 2	7.8 (0.2 0.	18 _	3 5.0	9.4	5.3	200	1503	3 <u>0.</u> 09	137	3.7	31.4	0.4	0.45	0.08	26.4	64	l
# of samples = 3, St	andard deviation	n =0.3	387	144	381	26	0.24	4104	0.13	21.0	21.	1 14	1.5	0.1)5	1	1.0	12.5	1.2	245	3163	0.01	61	2.4	35.8	0.3	0.15	0.01	2.3	72
Fred	uency detected	=	100%	100%	100%	100%	100%	100%	100%	100%	100)% 10	00% 6	7% 10	0%	100%	100%	33%	100%	100%	100%	100%	100%	100%	100%	100%	67%	100%	6 100	% 1C
Human Health Screenir	g Criteria:																													ı
																														l
WDOE MTCA Method /	A Industrial Soil	Cleanup	Levels -	Human R	eceptors (V	VDOE 200	011%1\$	NS	NS	NS	20	NS	NS	2	NS	200	00 19	19) N	S N	\$ 2	N	is N	NS 10	000 N	s n	is n	NS N	NS I	NS
EPA Region IX Industria	al Soil PRGs (EF	PA 2004))				5100	100000	NS	NS	1.6	6700	0 190	0 450	19	00 10	00000	30 4	450 4	11000 1	00000	310	19000	20000	800	410	5100	67	1000	10000
Ecological Screening C	riteria:						•						•			•			•			•					,			l
WDOE MTCA Ecologic	al Indicator Soil	Concent	rations fo	r Protectio	n of Terres	strial Plant	:s																							1
and Animals (WDOE 20	001b)						2	50	7	10	NS	102	10	4	20	NS	S NS	42	50) N	S 0.	1 11	o 3	30 5	50 \$	5 0.	.3		2	}6
EPA Ecological Soil Sci	eening Levels (Eco-SSL	s) (EPA 2	2005)			NS	NS	NS	NS	18	330	21	0.36	13	20	6 81	l N	S N	S N	I\$ N	\$ N	ıs n	NS 1	11 0.	27 N	IS I	NS 7	7.8	NS

Itailics - result below method detection limit, reported at 1/2 reporting limit

<u>Underline</u>- result between method detection limit and practical quantitation limit, reported at detected concentration

Bold values are the maximum detected concentrations (MDC)

Screening criteria exceeded

^a95 Percent upper confidence levels not computed because fewer than four samples.

^bCalculated value.

EPA = U.S. Environmental Protection Agency

MTCA = Model Toxics Control Act

NC = Not computed

NS = No standard

PRG = Preliminary remediation goal

WDOE = Washington Department of Ecology

mg/kg = Milligram per kilogram

Table 4. Surface Water Analytical Results Summary Rainy Mine EE/CA

rtainy wino EE/O/t	Doto											Analyte (Concent	tration (R ₂ /	L) ^a										
Sample ID	Date Collected	Ag	Al	As ₃	As ₅ ^e	As _T	Ва	Be	Cd	Co	Cr ₃ ^e	Cr ₆	Cr _T	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	TI	V	Z	<u>Z</u> n
QC-SW1 - background	6/27/2004		80	0.192	0.908	1.1	1.5	1	0.05	5	5	0.50	5	0.25	5	0.00089	2.5	5	0.05	0.1	1	0.025	5 2.5		5
RM-BG-SW4 - background	6/28/2004		90	0.043	0.018	0.25	1.5	1	0.05	5	5	0.05	5	0.25	20	NA	2.5	5	0.05	0.1	1	0.025			5
TW DO OVV+ Daonground	minimum =		80	0.043	0.018	0.25	1.5	1	0.05	5	5	0.05	5	0.25	5	0.00089	2.5	5	0.05	0.1	1	0.025			5
	MDC =	0.025	90	0.192	0.908	1.1	1.5	1	0.05	5	5	0.5	5	0.25	20	0.00089	2.5	5	0.05	0.1	1	0.025			5
	average =		85	0.1175	0.463	0.675	1.5	1	0.05	5	5	0.275	5	0.25	12.5	0.00089	2.5	5	0.05	0.1	1	0.025			5
SW-1 (collected by MSE ^c)	6/12/2007	0.000				1.5		-	0100					0.20											
aylor River d:																									
R-SW1	6/26/2004	0.025	50	0.069	0.216	0.25	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00046	2.5	5	0.05	0.1	1	0.025	5 2.5		5
R-SW2	6/26/2004	0.025	50	0.115	0.193	0.25	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00053	2.5	5	0.05	0.1	1	0.025			5
ite:																									
C-SW2	6/27/2004	0.025	70	0.131	1.269	1.4	1.5	1	0.05	5	5	0.5	5	0.25	20	0.00091	2.5	5	0.05	0.1	1	0.025	5 2.5		5
C-SW3	6/27/2004	0.025	100	0.117	1.283	1.4	1.5	1	0.05	5	5	0.5	5	1.1	10	0.00082	2.5	5	0.05	0.1	1	0.025			5
C-SW4	6/26/2004	0.025	70	0.163	0.937	1.1	1.5	1	0.05	5	5	0.5	5	0.8	5	0.00089	2.5	5	0.05	0.1	1	0.025			5
M-SEEP-SW1	6/28/2004		1260	0.044	14.1	14.1	8	1	0.2	5	5	0.5	5	687	580	0.00065	34	5	0.05	0.1	1	0.025			20
RM-SEEP-SW2	6/28/2004	0.16		0.0035	1.893	1.9	14	1	0.7	5	5	0.5	5	2020	150	0.00079	54	5	0.5	0.1	1	0.025			60
M-AWR-SW3	6/28/2004	0.025	110	5.43	52.3	57.7	4	1	0.05	5	5	0.5	5	2.1	30	0.00033	2.5	5	0.05	0.1	1	0.025	5 2.5		5
minimum (e	xcluding BG) =	= 0.025	70	0.0035	0.937	1.1	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00033	2.5	5	0.05	0.1	1	0.025			5
MDC (ex	cluding BG) =	0.16	2890	5.43	52.3	57.7	14	1	0.7	5	5	0.5	5	2020	580	0.00091	54	5	0.5	0.1	1	0.025		6	0
average (e	excluding BG)	= 0.05	750	0.98	12.0	12.9	5.1	1	0.2	5	5	0.5	5	452	133	0.00073	16.3	5	0.13	0.1	1	0.025			6.7
	95% UCL =		5416	15.8	68.4	71.9	9.2	1	1.2	5	5	0.5	5	10076	1330	0.00091	107	5	0.45	0.1	1	0.025	2.5		06
# of samples = 10, Sta			1049	2.0	18.6	20.5	4.6	0	0.2	0	0	0	0	745	206	0.00020	20	0	0.17	0	0	0	0		20
•	ency detected	= 10%	100%	90%	80%	70%	70%	0%	20%	0%	0%	0%	09	6 50%	6C	% 100	% 209	%	0% 1	10%	0%	0%	0%	0%	2
uman Health Screening Cr	riteria:															1			-1						
a - Washington HH		NS	NS	NS	NS	0.018	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.14	NS	6	610 N	IS	14	170	1.7	NS	N
b - Washington HH		100	NS	NS	NS	10	2000	4	5	NS	NS	NS	100	1300	30	0 2	50	1	100 1	5	6	50	2	NS	500
P- EPA HH		NS	NS	NS	NS	0.018	1000	NS	NS	NS	NS	NS	NS	1300) 30	0 N\$	50		610 N	NS	5.6	170	0.24	NS	74
cological Screening Criteria	a:					_ 							-												
- Washington Eco		NS	NS	NS	NS	190	NS	NS	0.08	NS	10.1	10.0	NS							.05	NS	5	NS	NS	5.
- EPA Eco		0.36	NS	NS	3.1	150d	4	0.66	0.02	23	4	11d	NS	0.45	5 10	00 0.77	'd 12	0	3 (0.05	30	5	12	20	6
				Analy	te Conce	ntration (Notes:																
Sample ID	Flow (gpm)	рН	Ca	Hard	K	Mg	Na	Sulfate	Itailics - re	sult below	/ method	detection	limit, re	ported at 1	/2 report	ting limit									
QC-SW1 - background	NM	6.3	1200	_ 3	<u>300</u>	100	900	<u>20</u>	<u>Underline</u> -	result bet	ween me	thod dete	ction lim	nit and prac	ctical qua	antitation lim	it, reported	d at det	tected con-	centratio	n				
RM-BG-SW4 - background	NM	6.1	1300	NA		100	150	NA	Bold value	s are the r	maximum	detected	concen	trations (M	IDC)										
	minimum =	6.1	1200	_3	150	100	150	<u>20</u>	5	Screening	criteria ex	xceeded		•											
	MDC =	6.3	1300	_3	<u>300</u>	100	<u>900</u>	<u>20</u>	Total cond	centrations	3														
	average =	= 6.2	1250	_3	225	100	525	<u>20</u>	^b Screening	g criteria fo	or hardne	ss depend	dent me	tals are ba	sed on a	n apparent	backgroun	nd hard	ness of 3 a	and were	e conscenta	eechtoatiotas	where ap	plicable.	.
aylor River:									^c Sample co	ollected du	uring site	reconnais	sance b	y MSE fro	m unnan	ned drainag	e upstrean	n of wa	aste rock pi	ile WR-2	; only an	tahy zaeslefioiict	to		
R-SW1	NM	6.5	1200	_3	150	100	<u>600</u>	5	dSamples t	from Taylo	or River w	vere not in	cluded	with sample	es from t	the site in de	etermining	minim	um, maxim	num, and	d average	ooscentra	ıti		
R-SW2	NM	6.5	1200	_3	150	100	700	<u>10</u>	eCalculated	d value.											,				
ite:				_					BG = Back	kground						1a-State of	Washingto	on amb	pient water	quality o	criteria fo	r protection	n of huma	n health	(WDO
C-SW2	14.1	6.6	1200	_ 3	150	100	900	<u>10</u>	d = Dissol	ved						2003)									
C-SW3	16.4	6.5	1200	_3	150	100	1000	5	EPA = U.S	6. Environr	mental Pr	rotection A	gency			1b-State of	Washingto	on drin	king water	standard	ds, WAC	246-290-3	10 (WSD	H 2006)	
C-SW4	NM	6.5	1000	_3	150	100	900	5	NOAA = N	lational Oc	ceanic an	d Atmospl	heric Ac	lministratio		2-EPA reco		l chroni	ic ambient	water qu	uality crite	eria for hun	nan cons	umption	of wate
M-SEEP-SW1	0.0007	6.7	7800		500	<u>400</u>	3200	20	NM = No r	measurem	ent	•				fish (EPA 2	006)								
M-SEEP-SW2	0.0005	4.3	6700	19	600	<u>600</u>	<u>3500</u>	50	NS = No s	standard						3-State of \	•	n ambi	ent water o	quality cr	iteria for	protection	of aquation	c life, chr	ronic cri
M-AWR-SW3	0.002	7.1	7600	20	<u>5</u> 00	<u>300</u>	<u>3200</u>	<u>20</u>		per confide						(WDOE 20	•								
				_	450	100	900	5	WDOE = V	Vashingto	n Denarti	ment of Fo	cology			4-EPA reco	mmended	l chroni	ic ambient	water qu	uality crite	eria for fres	shwater a	quatic life	e (EPA
	xcluding BG) =	= 4.3	1000	_3	150	100		U		-	-														
minimum (e			1000 7800	<u>_3</u> 21	150 <u>60</u> 0	600	<u>3500</u>	50	WSDH = V	Vashingto	n State D			ılth		if none exis	ted then u	sed Tie	er II second	dary chro	onic valu				
minimum (e MDC (ex	xcluding BG) =	7.1						50 18.3	WSDH = V	Vashingtor rogram pe	n State D er liter			ılth		if none exis	ted then u	sed Tie	er II second	dary chro	onic valu				

Table 5. Sediment Analytical Results Summary Rainy Mine EE/CA

		Date	TOC													Analyte	e Concer	ntration (m	g/kg)													i
Sample ID	(Collected	(%)	Ca	K	Mg	Na	CN	Ag	Al	As ₃	As ₅ ^a	As _T	Ba	Be	Cd	Co	Cr ₃ ^a	Cr ₆	Cr_T	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	TI	V	Zn	ı
QC-SS-1 - Bac	kground	6/27/2004	0.5	960	167	0 27	70 13	0.3	0.04	6950	0.161	9.3	9.5	66.8	0.1	0.39	<u>4</u>	5	0.955	6	18	10600	0.02	181	2.7	4.78	0.1	0.25	0.11	23.9	31	i
Taylor River:																																i
TR-SS-1		6/26/2004	0.2	1690	1750	3270	190	NA	0.13	6490	0.086	3.5	3.6	53.	1 0.1	<u>0.14</u>	<u>4</u>	2.2	0.786	_3	19	12100	0.02	216	3.8	7.4	0.05	0.25	0.13	22.6	40	i
TR-SS-2		6/28/2004	<u>0</u> .2	1920	1510	2990	280	NA	0.08	6790	0.068	5.3	5.4	44.1	0.1	<u>0.12</u>	<u>3</u>	3.2	0.823	_4	16	10500	0.02	189	3.1	3.48	0.05	0.25	0.11	20.3	30	i
																																l
Site:																																1
QC-SS-2		6/27/2004	2.2	1490	1300					6 7550	0.098	12.2	12.3	61.6	0.1	0.22	<u>4</u>	3.1	0.936	_4	27	9540	0.02	184	2.3	4.97	0.05	0.25	0.09	20.5	31	1
QC-SS-3		6/27/2004	0.6	1180	1090			0.25	0.28	6950	0.101	22.5	22.6	48.1	0.1	0.17	<u>3</u>	5.2	0.764	6	145	9700	0.02	135	2.4	3.6	0.05	0.25	0.07	17.7	30	i
QC-SS-4		6/26/2004	<u>0</u> .2	1590	1350	2110	250	0.25	0.09	5750	0.137	15.2	15.3	36.8	0.1	<u>0.14</u>	<u>3</u>	2.2	0.765	_3	30	8150	0.02	152	1.6	3.12	0.2	0.25	0.09	17	23	1
RM-SEEP-SS-		6/28/2004	8.8	3210	142				4.79	44200	1.025	178	179	66.3	0.6		8	8.4	2.573	11	4410	23300		167	<u>7</u>	27.2	<u>0.5</u>	<u>0.8</u>	0.23	39.9	82	ı
RM-SEEP-SS-		6/28/2004	6.8	2360	133		-	0 0.5	33.9	19500	3.342	201.7	205	63.1	0.1	0.69	<u>4</u>	9.9	1.119	11	2620	49700	<u>0.</u> 19	198	7	31.2	1.0	7	0.18	50.2	<u>9</u> 0	i
	minimum (exclu	<u> </u>	0.2	1180	1090	2110	190	0.25	0.06	5750	0.098	12.2	12.3	36.8	0.1	<u>0.14</u>	3	2.2	0.76	_3	27	8150	0.02	135	1.6	3.12	0.05	0.25	<u>0.07</u>	17.0	23	i
	MDC (exclud	0 /	8.8	3210	1420	5100	320	2.0	33.9	44200	3.34	201.7	205	66.3	0.6		8	9.9	2.57	11	4410	49700	<u>0</u> .19		<u>7</u>	31.2	1.0	7.0	0.23	50.2	_90	
	average (excl	J /	3.7	1966	1298	3058	242	8.0	7.8	16790	0.94	85.9	86.8	55.2	0.2			5.8	1.2			46 200			167	4.1	14.0	0.36	1.7	0.13	29.1	5
		5% UCL =		2748	1417	4205	288	4.1	207	3233		393	398	67.		0.6		7 8		2.3				0.20	191	6.6	27.3	0.74	10.3	0.20	43.5	
# of samp	oles = 9, Standa		=	667	199	860	55	0.7	11	12510		78	79	10	0			2.7						0.06	24	2.0	10.8	0.32	2.2	0.05	11.2	L 2
		y detected =		100%	100%	100%	1%	0%	100%	100%	6 100%	100%	100%	6 100	1% 1	1% 100	0% 10	00% 10	00% 1	00%	100%	100%	100%	11%	100%	100%	100%	33%	22%	100%	1009	٥
Human Health	Screening Crite	rıa:																								1						1
		0 0 .			_		DOF 000			NO					NO			0000	4.0	4.0												
	Method A Indus			els – Hun	nan Rece	eptors (W	DOE 200	1a)	NS	NS	NS	NS	20	NS	NS	2	NS	2000	19	19	NS		2	NS				_		_		NS
EPA Region IX		PRGS (EPA 2	2004)						5100	100000	NS	NS	1.6	67000	190	0 450	190	0 1000	00 3	0 4	50 41	000 100	0000	310	19000	20000	800	410	5100	67	1000	10
Ecological Scre		ant of Frank	atar Ca	dim ant O	alita / /a	Juga (MD	OF 2004																									1
recommended	ngton Developm	ient of Fresh	water Se	alment Q	luality va	liues (WD	OE 2004)	' -	2.0	NS	NS	NS	20.0	NS	NS	0.6	NS	NS	NS	95.0	80.	0 NS	0.5	: N	IS 6	0.0 3	335	0.4	NS	NS	NS	140
State of Washi	- 1	ent of Fresh	water Sc	diment 0	uality Va	ماريوم (۱۸/۱	OF 2004	- in	2.0	INO	INO	INO	20.0	INO	INO	0.0	CVI	INO	INO	93.0	00.	0 110	0.5) IN	VO 01	ψ.υ .	333	ψ. 4	INO	INO	INO	140
development	ngton Developii	1011L OI 1 16911	water oc	uniient Q	danty vo	iiues (VVD	OL 2004)		3.9	NS	NS	NS	5.9	NS	NS	0.6	NS	NS	NS	26.0	16.	0 NS	0.17	7 N	S 1	6.0 3	31.0	35.0	NS	NS	NS	110
EPA Threshold	Effects evel (VOAA 1999)							NS	NS	NS	NS	5.9	NS	NS	0.596	NS	NS	NS	37.			0.17		vs ·			1			NS	123
EPA Freshwate		/	DAA 199	9)					NS	NS	NS	NS	17	NS	NS	3.53	NS	NS	NS	90	197		0.48									315
																_						1				1	1					

Itailics - result below method detection limit, reported at 1/2 reporting limit

<u>Underline</u>- result between method detection limit and practical quantitation limit, reported at detected concentration

Bold values are the maximum detected concentrations (MDC)

Screening criteria exceeded

^aCalculated value.

BG = Background

EPA = U.S. Environmental Protection Agency

MTCA = Model Toxics Control Act

NOAA = National Oceanic and Atmospheric Administration

NS = No standard

ORNL = Oak Ridge National Laboratory

UCL = Upper confidence limit

WDOE = Washington Department of Ecology

mg/kg = Milligram per kilogram

Table 6. Pore Water Analytical Results Summary Rainy Mine EE/CA

	Date										Α	Analyte C	oncentrati	ion (R g/L)	а									
Sample ID	Collected	Ag	Al	As ₃	As ₅ ^c	As _T	Ва	Ве	Cd	Со	Cr ₃ ^c	Cr ₆	Cr _⊤	Cu	Fe	Hg	Mn	Ni	Pb	Sb	Se	TI	V	Zn
QC-PW-1 - backgroun	d 6/27/200	4 0.025	50	0.186	0.91	1.1	1.5	1	0.05	5	5	0.5	5	0.25	5	0.0008	2.5	5	0.05	0.1	0.05	0.2	2.5	5
QC-PW2	6/27/2004	0.025	50	0.083	1.22	1.3	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00088	2.5	5	0.05	0.1	0.05	<u>0.18</u>	2.5	5
QC-PW3	6/27/2004	0.025	40	0.051	1.35	1.4	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00177	2.5	5	0.05	0.1	0.05	<u>0.08</u>	2.5	5
QC-PW4	6/26/2004	0.025	60	0.028	0.97	1	_4	1	0.05	5	5	0.5	5	<u>1.9</u>	5	0.00286	2.5	5	0.05	0.1	0.05	<u>0.05</u>	2.5	5
RM-seep-PW1	6/28/2004	0.025	1320	8.08	0.02	8.1	17	1	0.5	5	5	0.5	5	409	9360	0.0011	60	5	0.2	0.1	0.05	6.0	2.5	70
RM-seep-PW2	6/28/2004	0.025	40	3.68	28.42	32.1	1.5	1	<u>0.2</u>	5	5	0.5	5	<u>0.6</u>	5	0.00013	2.5	5	0.05	0.1	0.05	0.05	2.5	5
minimu	ım (excluding BG)	= 0.025	40	0.028	0.02	1	1.5	1	0.05	5	5	0.5	5	0.25	5	0.00013	3	5	0.1	0.1	0.1	0.05	2.5	5
MDC	C (excluding BG) =	0.025	1320	8.08	28.42	32.1	17	1	0.5	5	5	0.5	5	409	9360	0.0029	60	5	0.2	0.1	0.05	6.0	2.5	70
avera	ige (excluding BG)	= 0.03	302	2.38	6.4	8.8	5.1	1	0.2	5	5	0.5	5	82	1876	0.0013	14.0	5	0.08	0.1	0	1.27	2.5	18
	95% UCL =	0.025	2835	5.77	1539	49.7	20	1	0.47	5	5	0.5	5	438	10031	0.0023	128	5	0.21	0.1	0.05	6.42	2.5	147
# of samples = 6,	, Standard deviation	n = 0	474	3.01	10	11.3	6	0	0.17	0	0	0	0	152	3486	0.0009	21	0	0.06	0	0	2.20	0	24
Fi	requency detected	= 0%	100%	100%	100%	100%	33%	0%	33%	5 0%	0%	0%	6 09	6 5C	% 1 ⁻	7% 10C)% 1	7%	0%	17%	0%	0%	83%	0%
Ecological Screening (Criteria																							
1- Washington Eco		NS	NS	NS	NS	190	NS	NS	0.08	NS	10.1	10.0) NS	0.5	7 N	IS 0.01	12 N	IS .	8.1	0.05	NS	5	NS	NS
2- EPA Ecδ		0.36	NS	NS	3.1	150d	4	0.66	0.02	23	4.2	110	d NS	S 0.4	5 10	000 0.7	7d 1	20	2.7	0.05	30	5	12	20
			ı	Analyte C	oncentratio	on (R g/L) ^a				Notes:														
i	I .									14 11	14 1 1	- 41		11 14		. 4 /0								

			A	Analyte C	oncentrat	ion (R g/L)	а	
Sample ID	рН	Ca	Hard	K	Mg	Na	Sulfate	CN
RM-BG-SW4 - background	6.5	1200	_ 3	150	100	<u>1000</u>	5	0.005
QC-PW2	6.1	1200	_3	150	100	1000	<u>20</u>	NA
QC-PW3	6.4	1200	_3	150	100	<u>1000</u>	<u>20</u>	0.005
QC-PW4	6.2	1000	_3	150	100	<u>1000</u>	<u>10</u>	0.005
RM-seep-PW1	5.6	6400	19	600	<u>6</u> 00	2600	<u>40</u>	NA
RM-seep-PW2	4.6	1200	_ 3	150	100	<u>1000</u>	<u>40</u>	NA
minimum (excluding BG)	= 4.6	1000	_ 3	150	100	<u>1000</u>	<u>10</u>	0.005
MDC (excluding BG) =	6.4	6400	19	600	<u>6</u> 00	2600	<u>4</u> 0	0.005
average (excluding BG)	= 5.8	2200	6.2	240	20	0 13	20 2	6 0.005
95% UCL =		6780		632	636	2002	39	

1-State of Washington ambient water quality criteria for protection of aquatic life, chronic criterion (WDOE 2003)

2-EPA recommended chronic ambient water quality criteria for freshwater aquatic life (EPA 2006); if none existed, used the Washington Department of Ecology II secondary chronic values (NOAA 1999)

Itailics - result below method detection limit, reported at 1/2 reporting limit

<u>Underline</u>- result between method detection limit and practical quantitation limit, reported at detected concentration

Bold values are the maximum detected concentrations (MDC)

Screening criteria exceeded

^aDissolved concentrations

Screening criteria for hardness dependent metals are based on a average hardness of 6.2.

^cCalculated value.

BG = Background

EPA = U.S. Environmental Protection Agency

NOAA = National Oceanic and Atmospheric Administration

NS = No standard

UCL = Upper confidence limit

fg/L = Microgram per lite

Table 7. Summary of Waste Volumes and Selected Metal Concentrations Rainy Mine $\ensuremath{\mathsf{EE}/\mathsf{CA}}$

			Selected	Metal Concentration	(mg/kg)
Area	Location	Estimated Volume (bcy)	Arsenic	Copper	Silver
	Average ba	ckground soil =	0.41	200	0.65
	Average backgro	ound sediment =	9.5	18	0.04^{a}
WR-1	Mill Site (east zone)	2000	222	1970	41.3
WR-2	West zone	25	15800	1310	15.0
S1 and S3	Soil around mill foundation	20	298	1660	41.1
RM-SEEP-SS-1	Sediment at west toe of waste rock pile WR-1	10	179	4410	4.8
RM-SEEP-SS-2	Sediment at east toe of waste rock pile WR-1	10	205	2620	33.9

Data in this table represent analytical results of samples collected during the Site Inspection (CES 2005).

bcy = Bank cubic yard

mg/kg = Milligram per kilogram

^a Analytical result between the method detection limit (MDL) and practical quantitation limit (PQL); value = detected concentration

Table 8. Surface Water Quality ARARs and Proposed Cleanup Criteria (total recoverable $\mu g/L$) Rainy Mine EE/CA

			State of W	ashington		Fed	eral		
			WAC 173-201A	WAC 246-290	Clean Water A	ct Section 304	National Toxics Ru	ile 40 CFR 131.26	Proposed Surface
Analyte	Apparent Background Concentration ^a	Maximum Detected Concentration	Protection of Aquatic Life, Chronic ^{b,c}	Drinking Water Criteria	Human Health Consumption of Water+Organism	Freshwater Chronic ^b	Human Health Consumption of Water+Organism	Freshwater Chronic ^b	Water Cleanup Criteria
Aluminum	85	2890							87
Arsenic	0.68	57.7	190	10	0.018	150	0.018	190	10
Barium	1.5	14		2000	1000				4
Cadmium	0.05	0.7	0.08	5		0.02		0.08	0.08
Copper	0.25	2020	0.57	1300	1300	0.45 ^d		0.57	0.57
Iron	12.5	580		300	300	1000			300
Manganese	2.5	54		50					50
Lead	0.05	0.5	0.05	15		0.05		0.05	0.05
Zinc	5	60	5.4	50000	7400	6.1		5	5.4

Itailics - result below method detection limit, reported at 1/2 reporting limit

<u>Underline</u> - result between method detection limit and practical quantitation limit, reported at detected concentration

 μ g/L = Microgram per liter

ARAR = Applicable or relevant and appropriate requirement

CFR = Code of Federal Regulations

PRG = Preliminary Remediation Goal

WAC = Washington Administrative Code

^aBased on one background sample from Quartz Creek upstream of the site and one sample from unnamed drainage.

^bHardness dependent criteria adjusted based on an apparent background hardness of 3; also converted to total concentrations where applicable.

^cFor protection of human health, State of Washingon defaults to National Toxics Rule 40 CFR 131.26.

^dThe federal Aquatic Life Ambient Freshwater Quality Copper Criterion was revised in 2007 and is to be calculated using site-specific water quality parameters (EPA 2007); however, there is insufficient site data available to calculate the criterion. Therefore, the 2006 criterion was used.

 $Table \ 9. \ Soil \ Quality \ ARARs \ and \ Proposed \ Cleanup \ Criteria \ (mg/kg)$

				State of Washington	1	Federal		
			WAC 173-340-740	WAC 173-340-7492	WAC 170-340-7493	EPA		
Analyte	Apparent Background Concentration ^a	Maximum Detected Concentration	MTCA Method A Industrial Soil (Table 745-1)	Method B Unrestricted Land Use (Table 749-2)	Method B Ecological Receptor ^b (Table 749-3)	Region 9 PRGs - Industrial Soil	Human Health Risk-based Criteria ^c	Proposed Soil Cleanup Criteria
Aluminum	20000	26200	NS	NS	50p	100000		20000
Antimony	0.37	5.3	NS	NS	5p	410		5
Arsenic	31.2	15800	$20 (As^3)$	$20 (As^3)$	$10p (As^5)$	1.6	33	33
Cadmium	0.18	0.61	2	25	4p	450		2
Chromium	5.3	<u>12</u>	19 (Cr ⁶)	42	42p,s	450		19
Copper	200	1970	NS	100	50s	41000		200
Mercury	<u>0.09</u>	1.08	2	9	0.1s	310		0.1
Lead	31.4	79.6	1000	220	50p	800		50
Selenuim	0.45	11.1	NS	0.8	0.3w	5100		0.45
Silver	0.65	41.3	NS	NS	2p	5100		2
Thallium	<u>0.08</u>	1.5	NS	NS	1p	67		1
Vanadium	26.4	67	NS	26	2p	1000		26.4
Zinc	63.7	69	NS	270	86p	100000		86

Notes:

Itailics - result below method detection limit, reported at 1/2 reporting limit

<u>Underline</u> - result between method detection limit and practical quantitation limit, reported at detected concentration

mg/kg = Milligram per kilogram

^cFrom Rainy Mine Streamlined Human Health and Ecological Risk Assessment (MSE 2006). Value calculated using human health risk equations, site-specific exposure factors, and an allowable non-carcinogenic hazard index of 1 and a carcinogenic risk of 1.E-05.

ARAR = Applicable or relevant and appropriate requirement

EPA = U.S. Environmental Protection Agency

MTCA = Model Toxics Control Act

NS = No standard

PRG = Preliminary Remediation Goal

WAC = Washington Administrative Code

^aBased on three background soil samples.

^bLowest value selected from plant(p), soil biota(s), and wildlife(w) receptors

Table 10. Sediment Quality ARARs and Proposed Cleanup Criteria (mg/kg) Rainy Mine EE/CA

			State of Wa	ashington	Fed	eral		
			WDOE 2004	WAC 173-204-320	EPA/NO	AA 1999		Proposed
Analyte	Apparent Background Concentration ^a	Maximum Detected Concentration	Freshwater Sediment Quality Standards (Recommended Only)	Marine Sediment Management Standards ^b	Threshold Effects Level	Probable Effects Level	Human Health Risk-based Criteria ^c	Sediment Cleanup Criteria
Arsenic	9.5	205	20	57	5.9	17	132	132
Cadmium	0.39	1.27	0.6	5.1	0.596	3.53		0.6
Copper	18	4410	80	390	35.7	197		80
Lead	4.78	31.2	335	450	35	91.3		335
Silver	0.04	33.9	2	6.1	NS	NS		2

 $\underline{\textbf{Underline}} \text{ -result between method detection limit and practical quantitation limit, reported at detected concentration}$

mg/kg = Milligram per kilogram

^aBased on a single background sample collected from Quartz Creek upstream of the site.

^cFrom Rainy Mine Streamlined Human Health and Ecological Risk Assessment (MSE 2006). Values calculated using human health risk equations, site-specific exposure factors, and an allowable non-carcinogenic hazard index of 1 and a carcinogenic risk of 1.E-05.

ARAR = Applicable or relevant and appropriate requirement

EPA = U.S. Environmental Protection Agency

NOAA = National Oceanic and Atmospheric Administration

NS = No standard

PRG = Preliminary Remediation Goal

WAC = Washington Administrative Code

WDOE = Washington Department of Ecology

^bFor reference only - not applicable.

Table 11. Summary of Areas Exceeding Risk-based Cleanup Levels Rainy Mine EE/CA

Media	Area	Contaminant	Risk-based Cleanup Level (mg/kg)	Maximum Detected Concentration (mg/kg)	Estimated Volume (bcy)
Soil/Waste	Soil around mill foundation (S-1 & S-3) Waste rock pile WR-1	Arsenic	33	299 222	25 2,000
Rock	Waste rock pile WR-2	Aiscilic	33	15800	25
Sediment	Sediment at west seep	Arsenic	132	179	80
Scament	Sediment at east seep	7 HISCHIE	132	205	20
		Total Esti	mated Volume of	Waste Material =	2150 bcy

bcy = Bank cubic yard

mg/kg = Milligram per kilogram

Table 12. Removal Action Technology Screening Matrix Rainy Mine EE/CA

Technology Class	Process Option	Description	Effective— ness	Implemen– tability	Cost	O&M	Land Impact	Pros	Cons	Retained?
No Action										
No action	No action	Leave feature(s) as is	0	0	0	none	none	Cheap, easy	No risk reduction	Yes
Institutiona	Controls					•	•	•		
	Barbed-wire fencing	3-strand barbed-wire fence around site.	Low	High	Low	Medium-subject to vandalism	Minimal	Simple	Only a mild impediment to access	No
Access restriction	Chain-link fencing	8-foot chain-link security fence around site	Medium	Low	High	Medium-subject to vandalism	Visual contrast	Simple, more effective than barbed-wire	Difficult to install on steep, uneven slopes	No
	Warning signs	Signs posted at physical hazards to warn of potential risks	Low	High	Low	Medium-subject to vandalism	Minimal	Simple, more effective than barbed-wire	Difficult to install on steep, uneven slopes	No
Physical Ha	zards									
•	Bat gate	Install bat gate in open adit	High	High	Low	Medium—subject to vandalism	None	Reduces ecoreceptor exposure; maintains bat habitat	Potential vandalism	Yes
	Backfill open shaft	Backfill open shaft	High	Medium	Low	Low-subject to further subsidence	Low	Eliminates physical hazard; may be able to use waste rock for fill material	Potential for future collapse; removes potential bat habitat	Yes
Access restriction	Plug open adit	Install PUF or concrete plug in addition to backfill and cover	Medium	Medium	Medium	Low-inspect vandalism	Minimal	Eliminates physical hazard	Removes potential bat habitat.	No
restriction	Cap open shaft with cupola	Install bat cupola over open shaft	High	Medium	Low	Low-inspect for sloughing around cap and vandalism	Minimal	Eliminate physical hazard; not as prone to collapse; mainatains bat habitat	Not natural looking, potential vandalism	Yes
	•	Remove scattered debris or bury on site	High	High	Low	None	Minimal	Cheap and easy, particularly for on-site disposal	May require waste characterization	Yes

Table 12. Removal Action Technology Screening Matrix Rainy Mine EE/CA

Technology Class	Process Option	Description	Effective— ness	Implemen– tability	Cost	O&M	Land Impact	Pros	Cons	Retained?
Engineering	Controls									
Surface controls	Runoff diversion	Use diversion channels to intercept surface water run on	Medium	High	Medium	Minimal; inspect for erosion	Low—channel	Reduce erosion and percolation of water through waste rock	Not independently effective	No
	Soil evapo- transpiration cover	Soil cover designed to store precipitation until it evaporates	Low	Low	Medium	Low-inspect for erosion		Simple design/installation	More applicable to arid/semi- arid climates; would require very thick soil cover	No
	Geosynthetic cover	Engineered multilayer cover with a synthetic liner (GCL or HDPE)	High	Medium	High	Low-inspect for erosion		Eliminates infiltration through waste material	Must be installed/tested correctly	Yes
Solids	Clay cover	Bentonite or composite clay geosynthetic cover + soil & seed	Low	Medium	Medium	High-clay subject to desication in semi-arid climate	< 1 ac repository and topsoil stockpile	Nearly eliminate infiltration; more forgiving installation than geosynthetics	Clay prone to decomposition from desiccation and freeze/thaw (ITRC 2004)	Yes
containment	Biological cover	Add carbohydrate— or protein—based nutrient mixes to cover soil	Medium	High	Medium	Low-inspect for erosion		Reduced leachate metals conc. (EPA 2000)	Strongly depends on mixture; design parameters not developed (EPA 2000)	No
	Cementitious cover	Fiber–reinforced concrete/mortar cover	High	Medium	High	Low-inspect for erosion		Reduce leachate metals conc.	Subject to cracking; not natural looking	No
	Polyurethane grout	Spray cover of polyurethane grout to inhibit infiltration	Medium	Medium	Medium	Low-inspect for erosion			Long term stability unknown (EPA 2000)	No
Land Dispos	sal	1				T		T	T	
On-site repository	Constructed repository	Excavate waste rock and place in on–site repository	High	High	Medium	Medium—inspect cap and analyze leachate; inspect reclaimed areas	<1 ac (reclaimed)	Eliminates or reduces direct exposure	Waste remains on site; potential for re-exposure	Yes
Off-site disposal	Landfill	Excavate waste rock and dispose in landfill	High	High	High	Low-material hauled off site; inspect reclaimed areas	None	Eliminates direct exposure by removing waste from site	Risk of highway spills	Yes

Table 12. Removal Action Technology Screening Matrix

Technology Class	Process Option	Description	Effective— ness	Implemen– tability	Cost	O&M	Land Impact	Pros	Cons	Retained?
Treatment										
Solidification/ Stabilization	Stabilization	Inject waste rock with cement or other material to physically stabilize	Medium to High	High	Medium	•	Minimal for access to waste rock piles		Leaves waste in the 100-year floodplain	No
Vitrification	Vitrification	Heat waste rock >2800°F to melt minerals	High	Low	High	Low-inspect for erosion/settling	Minimal for access to waste rock piles	excavation	Requires high energy source; high cost; leaves waste in floodplain	No
Washing	Washing	Excavate and wash waste rock with aqueous solution	Medium	Low	High	Low-inspect for erosion/settling	Minimal for access to waste rock piles and wash area	Reduces waste toxicity	Requires water source, significant waste handling; and chemical disposal	No

Table 13. Estimated Removal Action Cost Summary Rainy Mine EE/CA

					ative 3	Recommended
TD A CITY	T		Alternative 2		ost	Alternative
TASK	Description		Cost	Alt 3A	Alt 3B	Cost
Access Road						
Improvement			\$5,000	\$5,000	\$5,000	\$5,000
		subtotal =	\$5,000	\$5,000		\$5,000
Physical Hazards	Bat Gate Installation		\$5,500	\$5,500		\$5,500
Mitigation	Debris Removal		\$5,556	\$5,556		\$5,556
		subtotal =	\$11,056	\$11,056		\$11,050
	Access Road Construction		\$107,032	\$107,032	\$107,032	\$107,032
	Mine Waste Excavation and Disposal		\$195,267	\$40,241	\$40,481	\$40,241
Mine Waste	French Drain Construction				\$52,803	
Removal	Repository Construction ^(a)			\$27,169		\$27,169
Kemovai	Mine Waste Area Reclamation		\$18,651	\$11,370		\$11,370
	Access Road Reclamation		\$27,075	\$33,365	\$33,365	\$33,365
		subtotal =	\$348,025	\$219,175	\$369,715	\$219,175
	Staging Area Preparation		\$2,000	\$500	\$500	\$500
	Mobilization		\$20,000	\$30,000		\$30,000
Miscellaneous	Temporary Erosion Control BMPs		\$5,000	\$4,000		\$4,000
1/11secilaricous	Install Diversion Channel Above Repository			\$1,532	\$8,370	\$1,532
	Install Temporary Fence Around Repository			\$1,768	\$2,652	\$1,768
		subtotal =	\$27,000	\$37,800	\$46,522	\$37,800
		Removal Action Subtotal =	\$391,081	\$273,031	\$432,293	\$273,031
Design and	Design		\$39,108	\$40,955	\$64,844	\$40,955
Design and	Removal Action Oversight		\$40,000	\$60,000	\$60,000	\$60,000
Oversight		subtotal =	\$79,108	\$100,955	\$124,844	\$100,955
Post-removal	Post-removal Monitoring for 3 years		\$49,472	\$49,472	\$49,472	\$49,472
Monitoring		subtotal =	\$49,472	\$49,472	\$49,472	\$49,472
		SUBTOTAL =	\$519,662	\$423,458	\$606,609	\$423,458
Contingency	20% Contingency		\$103,932	\$84,692	\$121,322	\$84,692
		TOTAL COST =	\$ 623,594	\$ 508,150	\$ 727,931	\$ 508,150

^aCost based on repository cover option 1 - engineered cover; cover option 2 - earthen clay cover would increase cost from \$25,000 to \$31,000 based on options selected

Table 14. Data Gaps Summary Rainy Mine EE/CA

Data Gap	Potential Issues	Recommended Action	Estimated Cost
Lack of sufficient background samples: -Minimal background samples collected for each media type	-Background surface water, pore water, and sediment samples may have been impacted by mining activities upstream of the Site -Prevents establishing statistically representative Background concentrations for any media at the site -May result in applying site cleanup criteria that are below background levels -Makes it difficult to evaluate removal action effectiveness or compliance with ARARs	It is generally good practice to adequately characterize background conditions at a removal action site to ensure that cleanup criteria are above background levels, to evaluate removal action effectiveness, and determine post-removal compliance with ARARs. Additional background sampling should be conducted to develop statistically valid background concentrations for all media, and the analytical MDLs should be well below applicable screening criteria.	
Concrete mill foundation not characterized: -No samples of the concrete mill foundation have been collected.	-Concrete may contain elevated leachable concentrations of metalsMay be considered a hazardous waste.	A sample from the concrete mill foundation should be collected and analyzed to determine whether the material can be disposed of in an on-site repository or sanitary landfill.	
Potential presence of T&E amphibian species: -SI indicates T&E amphibian species may be present at the site.	-T&E species are to be protected to the individual levelMay require special measures to accommodate a sensitive species.	A detailed biological survey should be conducted to determine whether T&E amphibian species are present at the site, specifically around the seeps. Should also determine whether bats inhabit the open shaft and adit. Consult with USFS biologist.	USFS
Minimal site topography: -Topography generated in the SI covers a limited portion of the mill site and surrounding area. -No detailed topography for the area between the mill site and Adit 1, or the proposed repository areas	-Difficult to prepare an engineered design for removal actionsDifficult to delineate floodplain	Areas that will be addressed in the selected removal action alternative should be surveyed to provide adequate topography needed to prepare engineered designs and accurately estimate costs.	\$3,000-\$5,000
		Total Estimated Cost =	\$6,000- \$10,000

Table 15. Comparative Analysis of Removal Action Alternatives

	Alternative 1 Alternative 2		Alternative 3
Assessment Criteria	No Action	Excavation and Off-site Disposal	Excavation and On-site Disposal
Compliance with Remova	al Action Goals and	Objectives	
Attributes:	Does not comply	Waste material removed from site and physical hazards mitigated.	Waste material encapsulated on site and physical hazards mitigated.
Advantages:	None	+Eliminates potential exposure at site	+Reduces exposure potential at site
Overall Protectiveness of	Public Health, Safet	ty and Welfare	
Attributes:	No protection	All waste material exceeding cleanup levels removed from site.	All waste material exceeding cleanup levels encapsulated on site.
		+Higher level of human protection	+High level of human protection
Advantages:	None	+Eliminates potential for future releases at the site	+Eliminates risk to community from long-distance transport of waste
Environmental Protective	eness		
Attributes:	No protection	All waste material exceeding cleanup levels removed from site.	All waste material exceeding cleanup levels encapsulated on site.
Advantages:	None	+Higher level of ecological protection +Eliminates potential for future releases at the site	+High level of ecological protection
Compliance with Key AR	ARs		
Attributes:	Does not comply	Moderate compliance with Soil Quality ARARs High compliance with Solids Disposal ARARs High compliance with FP S&G ARARs	Moderate compliance with Soil Quality ARARs Moderate to high compliance with Solids Disposal ARARs High compliance with FP S&G ARARs
Advantages:	None	+Eliminates potential for future non-compliances from waste material	+Repository option 1 (ridge location) would better comply with FP S&Gs +Cover option 1 (engineered cover) meets substantive Solids Disposal ARARs
Long-term Effectiveness	and Permanence		
Attributes:	No action	Waste source removed from site. Bat gate may be subject to vandalism.	Waste source encapsulated on site. Effectiveness dependent on cover selection. Bat gate may be subject to vandalism.
Advantages:	None	+Most effective and permanent long term	+Effective and provides long-term permanence

Table 15. Comparative Analysis of Removal Action Alternatives

Rainy Mine EE/CA

	Alternative 1	Alternative 2	Alternative 3
Assessment Criteria	No Action	Excavation and Off-site Disposal	Excavation and On-site Disposal
Reduction of Toxicity, M	obility and Volume		
Attributes:	No action	No reduction in toxicity or mobility, but waste is removed from site.	No reduction in toxicity or mobility, but waste is encapsulated.
		+Complete reduction of waste volume	+Significant reduction of waste volume
Advantages:	None	+Most likely for reduction of mobility	+Reduction in mobility dependent on cover option selected; option 1 will be more effective at minimizing mobility.
Short-Term Effectiven	ess		
Attributes:	No action	Waste removed from the site within one field season.	Waste encapsulated on site within one field season. Short-term effectiveness will depend on cover selected; option 1 will be more effective in the short term.
		+Most easily constructed	+Easily constructed
Advantages:	None	+Minimal risk to community and workers	+Minimal risk to community and workers
			+Does not require off-site transport of waste
Implementability			
Attributes:	Not applicable	Waste removal, transport, and site reclamation accomplished using standard construction equipment and methods.	Waste removal, transport, site reclamation, and repository construction accomplished using standard construction equipment and methods.
Advantages:	None	+Easiest to implement; technically and administratively feasible.	+Easily implemented; technically and administratively feasible.
State and Federal Agency	y, and Community A	cceptance	
Attributes:	Not acceptable	Waste removed from site and physical hazards mitigated.	Waste encapsulated on site and physical hazards mitigated.
Advantages:	None	+Most acceptable	+Acceptable

Table 15. Comparative Analysis of Removal Action Alternatives

Assessment Criteria Estimated Total Present	Alternative 1 No Action Worth Cost	Alternative 2 Excavation and Off-site Disposal	Alternative 3 Excavation and On-site Disposal
Attributes:		15023.394	Repository Location 1 - Ridge ^a = \$508,150 Repository Location 2 - Mill Site ^a = \$727,931
Advantages (= cost savings over most expensive option):	+\$727,931	+\$104,337 savings	Using Repository Location 1 (Ridge) ^a = +\$219,781 Using Repository Location 2 (Mill Site) ^a = +\$0

Notes:

^aCosts based on engineered cover option; an earthen clay cover would increase costs \$25,000 to \$31,000 based on options selected.

ARAR = Applicable or Relevant and Appropriate Requirement

FP S&Gs = Forest Plan Standard and Guidelines